Skip to main content
Version: v0.2.23

remote::pgvector

Description​

PGVector is a remote vector database provider for Llama Stack. It allows you to store and query vectors directly in memory. That means you'll get fast and efficient vector retrieval.

Features​

  • Easy to use
  • Fully integrated with Llama Stack

There are three implementations of search for PGVectoIndex available:

  1. Vector Search:
  • How it works:
    • Uses PostgreSQL's vector extension (pgvector) to perform similarity search
    • Compares query embeddings against stored embeddings using Cosine distance or other distance metrics
    • Eg. SQL query: SELECT document, embedding <=> %s::vector AS distance FROM table ORDER BY distance

-Characteristics:

  • Semantic understanding - finds documents similar in meaning even if they don't share keywords
  • Works with high-dimensional vector embeddings (typically 768, 1024, or higher dimensions)
  • Best for: Finding conceptually related content, handling synonyms, cross-language search
  1. Keyword Search
  • How it works:

    • Uses PostgreSQL's full-text search capabilities with tsvector and ts_rank
    • Converts text to searchable tokens using to_tsvector('english', text). Default language is English.
    • Eg. SQL query: SELECT document, ts_rank(tokenized_content, plainto_tsquery('english', %s)) AS score
  • Characteristics:

    • Lexical matching - finds exact keyword matches and variations
    • Uses GIN (Generalized Inverted Index) for fast text search performance
    • Scoring: Uses PostgreSQL's ts_rank function for relevance scoring
    • Best for: Exact term matching, proper names, technical terms, Boolean-style queries
  1. Hybrid Search
  • How it works:

    • Combines both vector and keyword search results
    • Runs both searches independently, then merges results using configurable reranking
  • Two reranking strategies available:

    • Reciprocal Rank Fusion (RRF) - (default: 60.0)
    • Weighted Average - (default: 0.5)
  • Characteristics:

    • Best of both worlds: semantic understanding + exact matching
    • Documents appearing in both searches get boosted scores
    • Configurable balance between semantic and lexical matching
    • Best for: General-purpose search where you want both precision and recall
  1. Database Schema The PGVector implementation stores data optimized for all three search types: CREATE TABLE vector_store_xxx ( id TEXT PRIMARY KEY, document JSONB, -- Original document embedding vector(dimension), -- For vector search content_text TEXT, -- Raw text content tokenized_content TSVECTOR -- For keyword search );

-- Indexes for performance CREATE INDEX content_gin_idx ON table USING GIN(tokenized_content); -- Keyword search -- Vector index created automatically by pgvector

Usage​

To use PGVector in your Llama Stack project, follow these steps:

  1. Install the necessary dependencies.
  2. Configure your Llama Stack project to use pgvector. (e.g. remote::pgvector).
  3. Start storing and querying vectors.

This is an example how you can set up your environment for using PGVector​

  1. Export env vars:
export ENABLE_PGVECTOR=true
export PGVECTOR_HOST=localhost
export PGVECTOR_PORT=5432
export PGVECTOR_DB=llamastack
export PGVECTOR_USER=llamastack
export PGVECTOR_PASSWORD=llamastack
  1. Create DB:
psql -h localhost -U postgres -c "CREATE ROLE llamastack LOGIN PASSWORD 'llamastack';"
psql -h localhost -U postgres -c "CREATE DATABASE llamastack OWNER llamastack;"
psql -h localhost -U llamastack -d llamastack -c "CREATE EXTENSION IF NOT EXISTS vector;"

Installation​

You can install PGVector using docker:

docker pull pgvector/pgvector:pg17

Documentation​

See PGVector's documentation for more details about PGVector in general.

Configuration​

FieldTypeRequiredDefaultDescription
hoststr | NoneNolocalhost
portint | NoneNo5432
dbstr | NoneNopostgres
userstr | NoneNopostgres
passwordstr | NoneNomysecretpassword
kvstoreutils.kvstore.config.RedisKVStoreConfig | utils.kvstore.config.SqliteKVStoreConfig | utils.kvstore.config.PostgresKVStoreConfig | utils.kvstore.config.MongoDBKVStoreConfig, annotation=NoneType, required=False, default='sqlite', discriminator='type'NoConfig for KV store backend (SQLite only for now)

Sample Configuration​

host: ${env.PGVECTOR_HOST:=localhost}
port: ${env.PGVECTOR_PORT:=5432}
db: ${env.PGVECTOR_DB}
user: ${env.PGVECTOR_USER}
password: ${env.PGVECTOR_PASSWORD}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/pgvector_registry.db