Skip to main content
Version: v0.2.23

remote::chromadb

Description​

Chroma is an inline and remote vector database provider for Llama Stack. It allows you to store and query vectors directly within a Chroma database. That means you're not limited to storing vectors in memory or in a separate service.

Features​

Chroma supports:

  • Store embeddings and their metadata
  • Vector search
  • Full-text search
  • Document storage
  • Metadata filtering
  • Multi-modal retrieval

Usage​

To use Chrome in your Llama Stack project, follow these steps:

  1. Install the necessary dependencies.
  2. Configure your Llama Stack project to use chroma.
  3. Start storing and querying vectors.

Installation​

You can install chroma using pip:

pip install chromadb

Documentation​

See Chroma's documentation for more details about Chroma in general.

Configuration​

FieldTypeRequiredDefaultDescription
urlstr | NoneNo
kvstoreutils.kvstore.config.RedisKVStoreConfig | utils.kvstore.config.SqliteKVStoreConfig | utils.kvstore.config.PostgresKVStoreConfig | utils.kvstore.config.MongoDBKVStoreConfigNosqliteConfig for KV store backend

Sample Configuration​

url: ${env.CHROMADB_URL}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/chroma_remote_registry.db