Skip to main content
Version: v0.2.23

inline::qdrant

Description​

Qdrant is an inline and remote vector database provider for Llama Stack. It allows you to store and query vectors directly in memory. That means you'll get fast and efficient vector retrieval.

By default, Qdrant stores vectors in RAM, delivering incredibly fast access for datasets that fit comfortably in memory. But when your dataset exceeds RAM capacity, Qdrant offers Memmap as an alternative.

[An Introduction to Vector Databases]

Features​

Usage​

To use Qdrant in your Llama Stack project, follow these steps:

  1. Install the necessary dependencies.
  2. Configure your Llama Stack project to use Qdrant.
  3. Start storing and querying vectors.

Installation​

You can install Qdrant using docker:

docker pull qdrant/qdrant

Documentation​

See the Qdrant documentation for more details about Qdrant in general.

Configuration​

FieldTypeRequiredDefaultDescription
path<class 'str'>No
kvstoreutils.kvstore.config.RedisKVStoreConfig | utils.kvstore.config.SqliteKVStoreConfig | utils.kvstore.config.PostgresKVStoreConfig | utils.kvstore.config.MongoDBKVStoreConfigNosqlite

Sample Configuration​

path: ${env.QDRANT_PATH:=~/.llama/~/.llama/dummy}/qdrant.db
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/qdrant_registry.db