Skip to main content
Version: v0.4.3

inline::rag-runtime

Description​

RAG (Retrieval-Augmented Generation) tool runtime for document ingestion, chunking, and semantic search.

Configuration​

FieldTypeRequiredDefaultDescription
vector_stores_configVectorStoresConfigNodefault_provider_id=None default_embedding_model=None rewrite_query_params=None file_search_params=FileSearchParams(header_template='knowledge_search tool found {num_chunks} chunks:\nBEGIN of knowledge_search tool results.\n', footer_template='END of knowledge_search tool results.\n') context_prompt_params=ContextPromptParams(chunk_annotation_template='Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n', context_template='The above results were retrieved to help answer the user\'s query: "{query}". Use them as supporting information only in answering this query. {annotation_instruction}\n') annotation_prompt_params=AnnotationPromptParams(enable_annotations=True, annotation_instruction_template="Cite sources immediately at the end of sentences before punctuation, using <file-id

Sample Configuration​

{}