OpenAI Implementation Guide
This guide provides detailed code examples and implementation details for using OpenAI-compatible APIs with Llama Stack. For a comprehensive overview of OpenAI compatibility features, see our OpenAI API Compatibility Guide.
OpenAI API Compatibility​
Server path​
Llama Stack exposes OpenAI-compatible API endpoints at /v1. So, for a Llama Stack server running locally on port 8321, the full url to the OpenAI-compatible API endpoint is http://localhost:8321/v1.
Clients​
You should be able to use any client that speaks OpenAI APIs with Llama Stack. We regularly test with the official Llama Stack clients as well as OpenAI's official Python client.
Llama Stack Client​
When using the Llama Stack client, set the base_url to the root of your Llama Stack server. It will automatically route OpenAI-compatible requests to the right server endpoint for you.
from llama_stack_client import LlamaStackClient
client = LlamaStackClient(base_url="http://localhost:8321")
OpenAI Client​
When using an OpenAI client, set the base_url to the /v1 path on your Llama Stack server.
from openai import OpenAI
client = OpenAI(base_url="http://localhost:8321/v1", api_key="none")
Regardless of the client you choose, the following code examples should all work the same.
APIs implemented​
Models​
Many of the APIs require you to pass in a model parameter. To see the list of models available in your Llama Stack server:
models = client.models.list()
Responses​
Note: The Responses API implementation is still in active development. While it is quite usable, there are still unimplemented parts of the API. See Known Limitations of the OpenAI-compatible Responses API in Llama Stack for more details.
Simple inference​
Request:
response = client.responses.create(
model="meta-llama/Llama-3.2-3B-Instruct",
input="Write a haiku about coding."
)
print(response.output_text)
Example output:
Pixels dancing slow
Syntax whispers secrets sweet
Code's gentle silence
Structured Output​
Request:
response = client.responses.create(
model="meta-llama/Llama-3.2-3B-Instruct",
input=[
{
"role": "system",
"content": "Extract the participants from the event information.",
},
{
"role": "user",
"content": "Alice and Bob are going to a science fair on Friday.",
},
],
text={
"format": {
"type": "json_schema",
"name": "participants",
"schema": {
"type": "object",
"properties": {
"participants": {"type": "array", "items": {"type": "string"}}
},
"required": ["participants"],
},
}
},
)
print(response.output_text)
Example output:
{ "participants": ["Alice", "Bob"] }
Chat Completions​
Simple inference​
Request:
chat_completion = client.chat.completions.create(
model="meta-llama/Llama-3.2-3B-Instruct",
messages=[{"role": "user", "content": "Write a haiku about coding."}],
)
print(chat_completion.choices[0].message.content)
Example output:
Lines of code unfold
Logic flows like a river
Code's gentle beauty
Structured Output​
Request:
chat_completion = client.chat.completions.create(
model="meta-llama/Llama-3.2-3B-Instruct",
messages=[
{
"role": "system",
"content": "Extract the participants from the event information.",
},
{
"role": "user",
"content": "Alice and Bob are going to a science fair on Friday.",
},
],
response_format={
"type": "json_schema",
"json_schema": {
"name": "participants",
"schema": {
"type": "object",
"properties": {
"participants": {"type": "array", "items": {"type": "string"}}
},
"required": ["participants"],
},
},
},
)
print(chat_completion.choices[0].message.content)
Example output:
{ "participants": ["Alice", "Bob"] }
Completions​
Simple inference​
Request:
completion = client.completions.create(
model="meta-llama/Llama-3.2-3B-Instruct", prompt="Write a haiku about coding."
)
print(completion.choices[0].text)
Example output:
Lines of code unfurl
Logic whispers in the dark
Art in hidden form
Additional Resources​
- OpenAI API Compatibility Guide - Comprehensive overview of OpenAI compatibility features
- OpenAI Responses API Limitations - Detailed limitations and known issues
- Provider Documentation - Complete provider ecosystem overview