Vector Stores Configuration
Overview​
Llama Stack provides a variety of configuration options for vector stores through the VectorStoresConfig. This configuration allows you to customize file processing, chunk retrieval, search behavior, and performance parameters to optimize File Search and your RAG (Retrieval Augmented Generation) applications.
The configuration affects all vector store providers and operations across the entire stack, particularly the OpenAI-compatible vector store APIs.
Configuration Structure​
Vector store configuration is organized into logical subconfigs that group related settings. For example, the yaml below provides an example configuration for the Faiss provider.
vector_stores:
default_provider_id: "faiss"
default_embedding_model:
provider_id: "sentence-transformers"
model_id: "all-MiniLM-L6-v2"
# Query rewriting for enhanced search
rewrite_query_params:
model:
provider_id: "ollama"
model_id: "llama3.2:3b-instruct-fp16"
prompt: "Rewrite this search query to improve retrieval results by expanding it with relevant synonyms and related terms: {query}"
max_tokens: 100
temperature: 0.3
# File processing during file ingestion
file_ingestion_params:
default_chunk_size_tokens: 512
default_chunk_overlap_tokens: 128
# Chunk retrieval and ranking during search
chunk_retrieval_params:
chunk_multiplier: 5
max_tokens_in_context: 4000
default_reranker_strategy: "rrf"
rrf_impact_factor: 60.0
weighted_search_alpha: 0.5
# Batch processing performance settings
file_batch_params:
max_concurrent_files_per_batch: 3
file_batch_chunk_size: 10
cleanup_interval_seconds: 86400
# Tool output and prompt formatting
file_search_params:
header_template: "## Knowledge Search Results\n\nI found {num_chunks} relevant chunks:\n\n"
footer_template: "\n---\n\nEnd of search results."
context_prompt_params:
chunk_annotation_template: "**Source {index}:**\n{chunk.content}\n\n"
context_template: "Use the above information to answer: {query}"
annotation_prompt_params:
enable_annotations: true
annotation_instruction_template: "Cite sources using [Source X] format."
chunk_annotation_template: "[Source {index}] {chunk_text} (File: {file_id})"
Configuration Sections​
File Ingestion Parameters​
The file_ingestion_params configuration controls how files are processed during ingestion into vector stores when using client.vector_stores.files.create():
file_ingestion_params​
| Parameter | Type | Default | Description |
|---|---|---|---|
default_chunk_size_tokens | int | 512 | Default token count for file/document chunks when not explicitly specified |
default_chunk_overlap_tokens | int | 128 | Number of tokens to overlap between chunks (original default: 512 // 4) |
file_ingestion_params:
default_chunk_size_tokens: 512 # Smaller chunks for precision
default_chunk_overlap_tokens: 128 # Fixed token overlap for context continuity
Use Cases:
- Smaller chunks (256-512): Better for precise factual retrieval
- Larger chunks (800-1200): Better for context-heavy applications
- Higher overlap (200-300 tokens): Reduces context loss at chunk boundaries
- Lower overlap (50-100 tokens): More efficient storage, faster processing
Chunk Retrieval Parameters​
The chunk_retrieval_params controls search behavior and ranking strategies when using client.vector_stores.search():
chunk_retrieval_params​
| Parameter | Type | Default | Description |
|---|---|---|---|
chunk_multiplier | int | 5 | Over-retrieval factor for OpenAI API compatibility (affects all providers) |
max_tokens_in_context | int | 4000 | Maximum tokens allowed in RAG context before truncation |
default_reranker_strategy | str | "rrf" | Default ranking strategy: "rrf", "weighted", or "normalized" |
rrf_impact_factor | float | 60.0 | Impact factor for Reciprocal Rank Fusion (RRF) reranking |
weighted_search_alpha | float | 0.5 | Alpha weight for weighted search reranking (0.0-1.0) |
chunk_retrieval_params:
chunk_multiplier: 5 # Retrieve 5x chunks for reranking
max_tokens_in_context: 4000 # Context window limit
default_reranker_strategy: "rrf" # Use RRF for hybrid search
rrf_impact_factor: 60.0 # RRF ranking parameter
weighted_search_alpha: 0.5 # 50/50 vector/keyword weight
Ranking Strategies:
- RRF (Reciprocal Rank Fusion): Combines vector and keyword rankings with configurable impact factor
- Weighted: Linear combination with adjustable alpha (0=keyword only, 1=vector only)
- Normalized: Normalizes scores before combination
File Batch Parameters​
The file_batch_params controls performance and concurrency for batch file processing when using client.vector_stores.file_batches.*:
file_batch_params​
| Parameter | Type | Default | Description |
|---|---|---|---|
max_concurrent_files_per_batch | int | 3 | Maximum files processed concurrently in file batches |
file_batch_chunk_size | int | 10 | Number of files to process in each batch chunk |
cleanup_interval_seconds | int | 86400 | Interval for cleaning up expired file batches (24 hours) |
file_batch_params:
max_concurrent_files_per_batch: 3 # Process 3 files simultaneously
file_batch_chunk_size: 10 # Handle 10 files per chunk
cleanup_interval_seconds: 86400 # Clean up daily
Performance Tuning:
- Higher concurrency: Faster processing, more memory usage
- Lower concurrency: Slower processing, less resource usage
- Larger chunk size: Fewer iterations, more memory per iteration
- Smaller chunk size: More iterations, better memory distribution
Advanced Configuration​
Default Provider and Model Settings​
Set system-wide defaults for vector operations:
vector_stores:
default_provider_id: "faiss" # Default vector store provider
default_embedding_model: # Default embedding model
provider_id: "sentence-transformers"
model_id: "all-MiniLM-L6-v2"
Query Rewriting Configuration​
Enable intelligent query expansion for better search results:
rewrite_query_params​
| Parameter | Type | Description |
|---|---|---|
model | QualifiedModel | LLM model for query rewriting/expansion |
prompt | str | Prompt template (must contain {query} placeholder) |
max_tokens | int | Maximum tokens for expansion (1-4096) |
temperature | float | Generation temperature (0.0-2.0) |
rewrite_query_params:
model:
provider_id: "meta-reference"
model_id: "llama3.2"
prompt: |
Expand this search query with related terms and synonyms for better vector search.
Keep the expansion focused and relevant.
Original query: {query}
Expanded query:
max_tokens: 100
temperature: 0.3
Note: Query rewriting is optional. Omit this section to disable query expansion.
Output Formatting Configuration​
Customize how search results are formatted for RAG applications:
file_search_params​
file_search_params:
header_template: |
## Knowledge Search Results
I found {num_chunks} relevant chunks from your knowledge base:
footer_template: |
---
End of search results. Use this information to provide a comprehensive answer.
context_prompt_params​
context_prompt_params:
chunk_annotation_template: |
**Source {index}:**
{chunk.content}
*Metadata: {metadata}*
context_template: |
Based on the search results above, please answer this question: {query}
Provide specific details from the sources and cite them appropriately.
annotation_prompt_params​
annotation_prompt_params:
enable_annotations: true
annotation_instruction_template: |
When citing information, use the format [Source X] where X is the source number.
Always cite specific sources for factual claims.
chunk_annotation_template: |
[Source {index}] {chunk_text}
Source: {file_id}
Provider-Specific Considerations​
OpenAI-Compatible API​
All configuration options affect the OpenAI-compatible vector store API:
chunk_multiplieraffects over-retrieval in search operationsfile_ingestion_paramscontrol chunking during file attachmentfile_batch_paramscontrol batch processing performance
RAG Tools​
The RAG tool runtime respects these configurations:
- Uses
default_chunk_size_tokensfor file insertion - Applies
max_tokens_in_contextfor context window management - Uses formatting templates for tool output
All Vector Store Providers​
These settings apply across all vector store providers:
- Inline providers: FAISS, SQLite-vec, Milvus
- Remote providers: ChromaDB, Qdrant, Weaviate, PGVector
- Hybrid providers: Milvus (supports both inline and remote)