# remote::pgvector ## Description [PGVector](https://github.com/pgvector/pgvector) is a remote vector database provider for Llama Stack. It allows you to store and query vectors directly in memory. That means you'll get fast and efficient vector retrieval. ## Features - Easy to use - Fully integrated with Llama Stack ## Usage To use PGVector in your Llama Stack project, follow these steps: 1. Install the necessary dependencies. 2. Configure your Llama Stack project to use Faiss. 3. Start storing and querying vectors. ## Installation You can install PGVector using docker: ```bash docker pull pgvector/pgvector:pg17 ``` ## Documentation See [PGVector's documentation](https://github.com/pgvector/pgvector) for more details about PGVector in general. ## Configuration | Field | Type | Required | Default | Description | |-------|------|----------|---------|-------------| | `host` | `str \| None` | No | localhost | | | `port` | `int \| None` | No | 5432 | | | `db` | `str \| None` | No | postgres | | | `user` | `str \| None` | No | postgres | | | `password` | `str \| None` | No | mysecretpassword | | | `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig, annotation=NoneType, required=False, default='sqlite', discriminator='type'` | No | | Config for KV store backend (SQLite only for now) | ## Sample Configuration ```yaml host: ${env.PGVECTOR_HOST:=localhost} port: ${env.PGVECTOR_PORT:=5432} db: ${env.PGVECTOR_DB} user: ${env.PGVECTOR_USER} password: ${env.PGVECTOR_PASSWORD} kvstore: type: sqlite db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/pgvector_registry.db ```